OpenCV 使用 DNN 部署 YOLOv7

详情见参考项目[1]

import argparse
import os

import cv2
import numpy as np


class YOLOv7:
    def __init__(self, path, conf_thres=0.7, iou_thres=0.5):
        self.conf_threshold = conf_thres
        self.iou_threshold = iou_thres
        self.class_names = list(
            map(lambda x: x.strip(), open('coco.names', 'r').readlines()))
        # Initialize model
        self.net = cv2.dnn.readNet(path)
        input_shape = os.path.splitext(os.path.basename(path))[
            0].split('_')[-1].split('x')
        self.input_height = int(input_shape[0])
        self.input_width = int(input_shape[1])

        self.output_names = self.net.getUnconnectedOutLayersNames()
        self.has_postprocess = 'score' in self.output_names

    def detect(self, image):
        input_img = self.prepare_input(image)
        blob = cv2.dnn.blobFromImage(input_img, 1 / 255.0)
        # Perform inference on the image
        self.net.setInput(blob)
        # Runs the forward pass to get output of the output layers
        outputs = self.net.forward(self.output_names)

        if self.has_postprocess:
            boxes, scores, class_ids = self.parse_processed_output(outputs)

        else:
            # Process output data
            boxes, scores, class_ids = self.process_output(outputs)

        return boxes, scores, class_ids

    def prepare_input(self, image):
        self.img_height, self.img_width = image.shape[:2]

        input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        # Resize input image
        input_img = cv2.resize(
            input_img, (self.input_width, self.input_height))

        # Scale input pixel values to 0 to 1
        return input_img

    def process_output(self, output):
        predictions = np.squeeze(output[0])

        # Filter out object confidence scores below threshold
        obj_conf = predictions[:, 4]
        predictions = predictions[obj_conf > self.conf_threshold]
        obj_conf = obj_conf[obj_conf > self.conf_threshold]

        # Multiply class confidence with bounding box confidence
        predictions[:, 5:] *= obj_conf[:, np.newaxis]

        # Get the scores
        scores = np.max(predictions[:, 5:], axis=1)

        # Filter out the objects with a low score
        valid_scores = scores > self.conf_threshold
        predictions = predictions[valid_scores]
        scores = scores[valid_scores]

        # Get the class with the highest confidence
        class_ids = np.argmax(predictions[:, 5:], axis=1)

        # Get bounding boxes for each object
        boxes = self.extract_boxes(predictions)

        # Apply non-maxima suppression to suppress weak, overlapping bounding boxes
        # indices = nms(boxes, scores, self.iou_threshold)
        indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(
        ), self.conf_threshold, self.iou_threshold).flatten()

        return boxes[indices], scores[indices], class_ids[indices]

    def parse_processed_output(self, outputs):

        scores = np.squeeze(outputs[self.output_names.index('score')])
        predictions = outputs[self.output_names.index(
            'batchno_classid_x1y1x2y2')]

        # Filter out object scores below threshold
        valid_scores = scores > self.conf_threshold
        predictions = predictions[valid_scores, :]
        scores = scores[valid_scores]

        # Extract the boxes and class ids
        # TODO: Separate based on batch number
        batch_number = predictions[:, 0]
        class_ids = predictions[:, 1]
        boxes = predictions[:, 2:]

        # In postprocess, the x,y are the y,x
        boxes = boxes[:, [1, 0, 3, 2]]

        # Rescale boxes to original image dimensions
        boxes = self.rescale_boxes(boxes)

        return boxes, scores, class_ids

    def extract_boxes(self, predictions):
        # Extract boxes from predictions
        boxes = predictions[:, :4]

        # Scale boxes to original image dimensions
        boxes = self.rescale_boxes(boxes)

        # Convert boxes to xyxy format
        boxes_ = np.copy(boxes)
        boxes_[..., 0] = boxes[..., 0] - boxes[..., 2] * 0.5
        boxes_[..., 1] = boxes[..., 1] - boxes[..., 3] * 0.5
        boxes_[..., 2] = boxes[..., 0] + boxes[..., 2] * 0.5
        boxes_[..., 3] = boxes[..., 1] + boxes[..., 3] * 0.5

        return boxes_

    def rescale_boxes(self, boxes):

        # Rescale boxes to original image dimensions
        input_shape = np.array(
            [self.input_width, self.input_height, self.input_width, self.input_height])
        boxes = np.divide(boxes, input_shape, dtype=np.float32)
        boxes *= np.array([self.img_width, self.img_height,
                           self.img_width, self.img_height])
        return boxes

    def draw_detections(self, image, boxes, scores, class_ids):
        for box, score, class_id in zip(boxes, scores, class_ids):
            x1, y1, x2, y2 = box.astype(int)

            # Draw rectangle
            cv2.rectangle(image, (x1, y1), (x2, y2), (0, 0, 255), thickness=2)
            label = self.class_names[class_id]
            label = f'{label} {int(score * 100)}%'
            labelSize, baseLine = cv2.getTextSize(
                label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
            # top = max(y1, labelSize[1])
            # cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED)
            cv2.putText(image, label, (x1, y1 - 10),
                        cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=2)
        return image

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--imgpath', type=str,
                        default='images/person.jpg', help="image path")
    parser.add_argument('--modelpath', type=str, default='models/yolov7_640x640.onnx',
                        choices=["models/yolov7_640x640.onnx", "models/yolov7-tiny_640x640.onnx",
                                 "models/yolov7_736x1280.onnx", "models/yolov7-tiny_384x640.onnx",
                                 "models/yolov7_480x640.onnx", "models/yolov7_384x640.onnx",
                                 "models/yolov7-tiny_256x480.onnx", "models/yolov7-tiny_256x320.onnx",
                                 "models/yolov7_256x320.onnx", "models/yolov7-tiny_256x640.onnx",
                                 "models/yolov7_256x640.onnx", "models/yolov7-tiny_480x640.onnx",
                                 "models/yolov7-tiny_736x1280.onnx", "models/yolov7_256x480.onnx"],
                        help="onnx filepath")
    parser.add_argument('--confThreshold', default=0.3,
                        type=float, help='class confidence')
    parser.add_argument('--nmsThreshold', default=0.5,
                        type=float, help='nms iou thresh')
    args = parser.parse_args()

    # Initialize YOLOv7 object detector
    yolov7_detector = YOLOv7(
        args.modelpath, conf_thres=args.confThreshold, iou_thres=args.nmsThreshold)
    srcimg = cv2.imread(args.imgpath)

    # Detect Objects
    boxes, scores, class_ids = yolov7_detector.detect(srcimg)

    # Draw detections
    dstimg = yolov7_detector.draw_detections(srcimg, boxes, scores, class_ids)
    winName = 'Deep learning object detection in OpenCV'
    cv2.namedWindow(winName, 0)
    cv2.imshow(winName, dstimg)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

  1. https://github.com/hpc203/yolov7-opencv-onnxrun-cpp-py在新窗口打开 ↩︎