二项式定理

对于 a,bRa, b \in \mathbb{R}nNn \in \mathbb{N}^*,有

(a+b)n=i=0n(ni)anibi \left(a + b\right)^n = \sum_{i = 0}^n \binom{n}{i} a^{n - i} b^i

证明
  1. n=1n = 1 时,显然结论成立
  2. n=kn = k 时,假设结论成立,有

(a+b)k=i=0k(ki)akibi \left(a + b\right)^k = \sum_{i = 0}^k \binom{k}{i} a^{k - i} b^i

n=k+1n = k + 1 时,有

(a+b)k+1=(a+b)k(a+b)=(i=0k(ki)akibi)(a+b)=i=0k(ki)aki+1bi+i=0k(ki)akibi+1=i=1k+1(ki1)aki+1bi1+i=0k(ki)akibi+1=ak+1+i=1k(ki1)aki+1bi+i=1k(ki)aki+1bi+bk+1=ak+1+i=1k((ki1)+(ki))aki+1bi+bk+1=ak+1+i=1k(k+1i)aki+1bi+bk+1=i=0k+1(k+1i)ak+1ibi \begin{aligned} \left(a + b\right)^{k + 1} &= \left(a + b\right)^k \left(a + b\right) \\ &= \left(\sum_{i = 0}^k \binom{k}{i} a^{k - i} b^i\right) \left(a + b\right) \\ &= \sum_{i = 0}^k \binom{k}{i} a^{k - i + 1} b^i + \sum_{i = 0}^k \binom{k}{i} a^{k - i} b^{i + 1} \\ &= \sum_{i = 1}^{k + 1} \binom{k}{i - 1} a^{k - i + 1} b^{i - 1} + \sum_{i = 0}^k \binom{k}{i} a^{k - i} b^{i + 1} \\ &= a^{k+1} + \sum_{i = 1}^k \binom{k}{i - 1} a^{k - i + 1} b^i + \sum_{i = 1}^k \binom{k}{i} a^{k - i + 1} b^i + b^{k + 1} \\ &= a^{k+1} + \sum_{i = 1}^k \left(\binom{k}{i - 1} + \binom{k}{i}\right) a^{k - i + 1} b^i + b^{k + 1} \\ &= a^{k+1} + \sum_{i = 1}^k \binom{k + 1}{i} a^{k - i + 1} b^i + b^{k + 1} \\ &= \sum_{i = 0}^{k + 1} \binom{k + 1}{i} a^{k + 1 - i} b^i \end{aligned}

结论仍成立,综合 (1) 和 (2),结论成立。